Efficiency Constrained Bias Robust Estimation of Location
نویسندگان
چکیده
منابع مشابه
Bias Robust Estimation of Scale Where Location Is Unknown
In this paper we consider the problem of robust estimation of the scale of the location residuals when the "true" underlying distribution of the data belongs to a contamination neighborhood of a parametric location-scale family. First we show that a scaled version of the l\tlADAM (median of absolute residuals about the median) is approximately most bias-robust within the class 0 Huber's proposa...
متن کاملA Robust Scenario Based Approach in an Uncertain Condition Applied to Location-Allocation Distribution Centers Problem
The paper discusses the location-allocation model for logistic networks and distribution centers through considering uncertain parameters. In real-world cases, demands and transshipment costs change over the period of the time. This may lead to large cost deviation in total cost. Scenario based robust optimization approaches are proposed where occurrence probability of each scenario is not know...
متن کاملA Two-Phase Robust Estimation of Process Dispersion Using M-estimator
Parameter estimation is the first step in constructing any control chart. Most estimators of mean and dispersion are sensitive to the presence of outliers. The data may be contaminated by outliers either locally or globally. The exciting robust estimators deal only with global contamination. In this paper a robust estimator for dispersion is proposed to reduce the effect of local contamination ...
متن کاملSimultaneous robust estimation of multi-response surfaces in the presence of outliers
A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1991